What is MODERN PHYSICS? What does MODERN PHYSICS mean? MODERN PHYSICS meaning - MODERN PHYSICS definition - MODERN PHYSICS explanation
  • 5 years ago
What is MODERN PHYSICS? What does MODERN PHYSICS mean? MODERN PHYSICS meaning - MODERN PHYSICS definition - MODERN PHYSICS explanation.

Modern physics is the post-Newtonian conception of physics. It implies that classical descriptions of phenomena are lacking, and that an accurate, "modern", description of nature requires theories to incorporate elements of quantum mechanics or Einsteinian relativity, or both. In general, the term is used to refer to any branch of physics either developed in the early 20th century and onwards, or branches greatly influenced by early 20th century physics.

Small velocities and large distances is usually the realm of classical physics. Modern physics, however, often involves extreme conditions: quantum effects typically involve distances comparable to atoms (roughly 10−9 m), while relativistic effects typically involve velocities comparable to the speed of light. In general, quantum and relativistic effects exist across all scales, although these effects can be very small in everyday life.

In a literal sense, the term modern physics, means up-to-date physics. In this sense, a significant portion of so-called classical physics is modern. However, since roughly 1890, new discoveries have caused significant paradigm shifts: the advent of quantum mechanics (QM) and of Einsteinian relativity (ER). Physics that incorporates elements of either QM or ER (or both) is said to be modern physics. It is in this latter sense that the term is generally used.

Modern physics is often encountered when dealing with extreme conditions. Quantum mechanical effects tend to appear when dealing with "lows" (low temperatures, small distances), while relativistic effects tend to appear when dealing with "highs" (high velocities, large distances), the "middles" being classical behaviour. For example, when analysing the behaviour of a gas at room temperature, most phenomena will involve the (classical) Maxwell–Boltzmann distribution. However near absolute zero, the Maxwell–Boltzmann distribution fails to account for the observed behaviour of the gas, and the (modern) Fermi–Dirac or Bose–Einstein distributions have to be used instead.
Recommended